
	

©	Shackle	Labs,	LLC	 	 Page	1	of	15	
		

	
	
	
	

Standard	Notes	
Standard	File	Cryptography	Design	Review	
	
May	22,	2017	Updated	August	5,	2017	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	2	of	15	
		

Table	of	Contents	

Project	Details	...	3	
Project	Overview	&	Objectives	...	3	
Project	Team	..	3	
Scope	&	Limitations	..	3	

Executive	Summary	..	5	

Findings	...	6	
#1	–	Client	Blindly	Trusts	KDF	Parameters	Sent	from	Server	...	7	
#2	–	No	Cross-Application	Isolation	...	9	
#3	–	No	Cryptographic	Binding	Between	Name	and	Content	..	10	
#4	–	Deleted	Bit	is	Unauthenticated	..	11	
#5	–	Inconsistent	HMAC	Parameter	Ordering	..	12	
Recommendations	...	13	

Support	Two-Factor	Authentication	from	The	Start	...	13	
Rename	"password"	to	Something	More	Appropriate	..	13	
Prevent	Future	Version	Rollback	Attacks	...	13	
Standardize	on	One	Hash	Function	..	13	
Suggest	Comparing	MACs	in	Constant	Time	..	13	
Write	a	Threat	Model	...	14	

Errata	..	15	
	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	3	of	15	
		

Project	Details	
	
In	May	of	2017,	Standard	Notes	(Mo	Bitar)	requested	that	Shackle	Labs	conduct	a	design	review	
of	the	use	of	cryptography	in	the	Standard	File	specification,	this	report	represents	the	results	of	
this	effort.		Shackle	Labs	has	taken	all	reasonable	efforts	to	complete	this	cryptography	design	
review	using	industry	standard	techniques	and	technologies	and	staff	with	expertise	in	the	field,	
to	ensure	the	quality	and	accuracy	of	this	report.	
	
Project	Overview	&	Objectives	
	
At	 the	 request	 of	 Standard	Notes	 (Mo	Bitar),	 Shackle	 Labs	 has	 completed	 a	 thorough	design	
review	of	the	Standard	File	specification’s	use	of	cryptography.	
	
The	goal	of	this	project	was	to	determine	the	if	flaws	exist	in	the	use	of	cryptography	that	would	
lead	to	a	loss	of	confidentiality	or	integrity.	Such	flaws	represent	a	significant	risk	to	the	users	of	
the	Standard	File	specification,	including	Standard	Notes.	
		
The	specification	version	reviewed	was	v0.0.2,	retrieved	from	https://standardfile.org/	on	May	
17,	2017.	
	
This	effort	began	on	May	17,	2017	and	was	completed	on	May	22,	2017.	
	
On	 June	 29,	 2017,	 at	 the	 direction	 of	 Mo	 Bitar,	 an	 updated	 version	 of	 the	 Standard	 File	
specification	was	reviewed	(v0.0.2,	retrieved	June	29,	2017)	to	determine	if	the	issues	identified	
in	 the	 initial	 audit	were	 remediated.	All	 findings	were	 reviewed	 (recommendations	were	not	
reviewed),	 findings	 1,	 3,	 and	 5	 were	 found	 to	 be	 remediated,	 finding	 2	 was	 closed	 after	
discussions	with	the	client	and	a	change	in	documented	purpose,	finding	4	remains	open.	
	
Project	Team	
	
The	following	representatives	of	Standard	Notes	(Mo	Bitar)	took	part	in	this	effort:	
	

• Mo	Bitar	(Primary	Contact)	
	
The	following	members	of	the	Shackle	Labs	team	took	part	in	this	effort:	
	

• Adam	Caudill,	Chief	Research	Officer	
• Taylor	Hornby,	Consultant	

	
Scope	&	Limitations	
	
The	scope	of	this	project	is	defined	as	only	the	portions	of	the	Standard	File	specification	related	
to	cryptography,	no	API	interface	or	other	portion	of	the	system	was	examined.	

	

©	Shackle	Labs,	LLC	 	 Page	4	of	15	
		

	
The	following	limitation	should	be	noted,	as	they	were	out	of	scope	or	due	to	technical,	legal,	or	
other	reasons	had	to	be	excluded:	
	

• No	implementation	of	Standard	File,	including	Standard	Notes	was	examined,	this	design	
review	was	 limited	 to	 the	 specification	 only.	 Additional	 issues	 are	 likely	 to	 exist	 if	 an	
implementation	does	not	adhere	to	the	specification.	

• The	specification	includes	the	use	of	JSON	Web	Tokens,	the	use	of	these	tokens	was	not	
included	in	this	review.	

	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	5	of	15	
		

Executive	Summary	
	
At	the	request	of	Standard	Notes	(Mo	Bitar),	Shackle	Labs	has	completed	a	design	review	on	the	
use	of	cryptography	in	the	Standard	File	specification.	For	Standard	Notes	(Mo	Bitar),	this	effort	
was	led	by	Mo	Bitar,	and	for	Shackle	Labs,	Adam	Caudill.	At	the	direction	of	Mo	Bitar,	the	scope	
of	this	effort	was	defined	as	only	the	portions	of	the	Standard	File	specification	that	relate	to	
cryptography;	 no	 implementations	 were	 reviewed.	 Based	 on	 a	 thorough	 assessment	 of	 the	
Standard	File	specification,	Shackle	Labs	has	found	the	following.	
	
Five	exploitable	issues	were	found,	with	one	being	rated	as	High	severity,	in	addition,	there	were	
eight	informational	findings.		
	
The	most	severe	 issue	 found	 is	 that,	per	 the	specification,	 the	client	will	blindly	 trust	 the	Key	
Derivation	 Function	 (KDF)	 parameters	 supplied	 by	 the	 server.	 This	 allows	 a	 malicious	 or	
compromised	server	to	weaken	the	parameters	to	the	weakest	that	the	client	supports,	making	
it	far	simpler	for	the	server	to	recover	the	user’s	password.	Given	the	specifications	stated	goal	
of	minimal	trust	in	the	server,	this	violates	that	goal	and	introduces	a	substantial	risk	of	attack.	
	
It	 was	 found	 that	 there	 is	 no	 cross-application	 isolation,	 which	 can	 lead	 to	 a	 malicious	 or	
compromised	application	to	steal	all	data	belonging	to	a	user,	including	data	stored	by	a	different	
application.	 It	was	 also	 found	 that	 there	 is	 no	 cryptographic	 binding	 between	 the	 name	 and	
content	of	a	file,	allowing	a	compromised	or	malicious	server	to	swap	the	content	of	a	file	with	
that	of	a	different	file,	and	the	client	would	be	unable	to	determine	that	this	switch	had	occurred.	
	
Two	 Low	 severity	 issues	were	 also	 identified,	 relating	 to	 the	 server’s	 ability	 to	 transparently	
delete	user	data,	and	an	error	in	the	specification	that	could	lead	to	erroneous	implementations.	
Eight	informational	findings	were	identified,	some	of	which	would	improve	the	security	of	the	
specification,	some	of	which	address	likely	vulnerabilities	in	implementations	of	the	specification	
(which	were	not	tested	in	this	review).	
	
Shackle	 Labs	 strongly	 recommends	 that	 a	 new	 version	 of	 the	 Standard	 File	 specification	 be	
created	 that	 addresses	 these	 issues	 as	 soon	as	possible.	While	overall,	 it	was	 found	 that	 the	
Standard	File	 specification	was	well	defined	and	shows	 that	 significant	effort	was	placed	 into	
meeting	industry	standard	best	practices,	significant	issues	were	found	that	should	be	addressed.	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	6	of	15	
		

Findings	
	
During	the	course	of	this	review,	the	following	was	found	–	these	issues	are	rated	based	on	two	
criteria:	
	

• Severity:	The	impact	of	the	issue,	if	exploited.	
• Exploitability:	The	ease	with	which	the	issue	can	be	exploited.	

	
In	 addition,	 informational	 findings	 are	 also	 included,	 that	would	 increase	 the	 security	 of	 the	
design	or	quality	of	the	specification.	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	7	of	15	
		

	
#1	–	Client	Blindly	Trusts	KDF	Parameters	Sent	from	Server	
	
Severity:	High	
Exploitability:	High	
Status:	Remediated	
	
Updated	 July	 2,	 2017:	 This	 issue	 was	 fixed	 as	 recommended	 by	 fixing	 some	 of	 the	 PBKDF2	
parameters	(hash	algorithm,	output	length)	and	authenticating	the	others	(salt,	iteration	count).	
	
Updated	August	5,	2017:	A	 security	 flaw	 in	our	original	 recommendation	 to	authenticate	 the	
pw_cost	and	pw_salt	parameters	was	reported	by	Dmitry	Chestnykh.	The	section	below	has	been	
updated	to	remove	the	vulnerability.	A	discussion	of	the	error	can	be	found	in	the	Errata	section.	
	
Quoting	the	project's	design	document...	
	

Standard	File	attempts	to	make	no	final	judgement	on	the	best	key	derivation	function	to	
use,	 and	 instead	defers	 to	 clients	 to	make	 this	 decision.	 This	 allows	 for	 a	 future-proof	
implementation	that	allows	clients	to	adjust	based	on	present-day	security	needs.	

	
...explains	why	the	parameters	pw_func,	pw_alg,	pw_cost,	pw_key_size,	and	pw_nonce	are	
stored	on	the	server.	These	parameters	are	not	authenticated,	so	the	server	is	free	to	weaken	
them	in	an	attempt	to	break	the	user's	security.	
	

• pw_func,	pw_alg:	If	the	client	supports	multiple	KDFs	or	hash	algorithms,	the	server	can	
force	the	client	to	use	the	weakest	ones.	This	is	a	"security	usability"	problem:	the	more	
options	there	are	and	the	more	untrusted	input	the	client	is	receiving	from	the	server,	
the	harder	it	is	to	implement	the	client	securely.	It	would	be	better	to	enforce	a	specific	
algorithm	choice	in	the	spec	that	can	only	change	in	later	versions	of	the	entire	protocol	
(e.g.	PBKDF2-SHA256	for	now).	

• pw_cost:	The	server	can	set	this	to	a	low	value	to	make	it	easier	to	brute	force	the	user's	
original	password	from	the	value	that	gets	sent	in	the	POST	auth/sign_in	request.	This	
parameter	should	be	compared	against	a	minimum	value.	

• pw_key_size:	The	client	does	not	authenticate	this	value,	and	so	the	server	can	exploit	
it	in	either	of	two	ways.	Firstly,	if	the	server	sends	a	value	of	0,	then	the	client	will	use	
zero-length	 keys	 to	 encrypt	 all	 future	 files	 and	modifications	 to	 files.	 Secondly,	 if	 the	
server	sends	a	value	which	is	the	double	of	the	correct	value,	then	the	`pw`	value	sent	to	
the	server	will	contain	the	master	key.	This	happens	because	of	a	property	of	PBKDF2:	if	
you	 ask	 for	 a	 longer	 output,	 the	 leading	 part	 does	 not	 change,	 so	 if	 say	 the	 original	
pw_key_size	is	32	and	the	server	sends	64,	then	the	computed	`pw`	will	be	the	same	as	
the	`pw||mk`	that's	computed	in	the	non-attack	case.	To	fix	this,	all	key	lengths	should	be	
fixed	 for	 the	 version	 of	 the	 protocol	 and	 only	 changed	 in	 later	 versions	 of	 the	 entire	
protocol.		

	

©	Shackle	Labs,	LLC	 	 Page	8	of	15	
		

• pw_salt:	The	server	can	set	this	to	an	all-zero	(or	constant)	value,	making	it	easier	to	
brute	 force	 the	 user's	 original	 password	 from	 the	 value	 that	 gets	 sent	 in	 the	 POST	
auth/sign_in	request.	

	
The	pw_func,	pw_alg,	and	pw_key_size	parameters	should	be	removed	and	made	part	of	the	
protocol	specification.		The	pw_cost	parameter	should	be	checked	to	be	no	less	than	a	minimum	
value,	say	100,000	 iterations.	The	pw_salt	should	be	derived	from	a	random	pw_nonce	value	
stored	on	the	server	combined	with	the	user’s	account	identifier,	for	example,	
	

pw_salt	=	SHA256(email	+	“#”	+	pw_nonce).	
	
This	should	be	computed	on	the	client	to	prevent	the	server	from	obtaining	hashes	of	different	
users’	passwords	under	the	same	salt.	The	client	should	check	that	the	length	of	the	pw_nonce	
they	receive	from	the	server	is	some	standard	value	defined	in	the	protocol,	say	256	bits.	
	
	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	9	of	15	
		

#2	–	No	Cross-Application	Isolation		
	
Severity:	Medium	
Exploitability:	High	
Status:	Closed	
	
Updated	July	2,	2017:	As	far	as	we	can	tell,	this	issue	has	not	been	fixed.	Enforcing	boundaries	
between	clients	will	require	either	(A)	the	user	giving	different	strong	passwords	to	each	client	
or	 (B)	 implementing	 something	 OAuth-like	 and	 trusting	 that	 the	 server	 will	 enforce	 access	
controls.	
	
Per	discussions	with	the	client,	Mo	Bitar,	Standard	File	is	no	longer	intended	to	be	used	by	any	
application	other	than	Standard	Notes,	and	as	such,	this	issue	is	deemed	to	be	closed,	but	not	
remediated.	
	
All	applications	the	user	logs	in	to	derive	the	same	master	key,	and	have	access	to	all	of	the	same	
data.		
	
This	means	that	if	the	user	accidentally	logs	in	to	an	application	that	is	untrustworthy	(or	simply	
less	trustworthy	than	any	of	the	other	applications	the	user	is	using),	that	application	can	steal	
their	master	key	and	all	of	their	data.		
	
To	fix	this,	applications	need	to	be	given	different	keys.	Fixing	this	requires	re-architecting	the	
protocol,	 since	 as	 it	 stands	 applications	 are	 provided	 with	 the	 email	 and	 password	 which	 is	
enough	information	to	impersonate	the	user.	If	this	is	not	fixed	somehow,	then	both	application	
developers	and	the	user	should	be	aware	that	all	applications	are	able	to	access	to	all	of	their	
data	(even	other	applications'	data).	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	10	of	15	
	

#3	–	No	Cryptographic	Binding	Between	Name	and	Content		
	
Severity:	Medium	
Exploitability:	High	
Status:	Remediated	
	
Updated	July	2,	2017:	This	issue	was	fixed	by	including	the	UUID	in	the	HMAC	calculation,	and	
checking	 the	UUID	upon	decryption.	This	will	prevent	 the	server	 from	swapping	 the	contents	
without	also	swapping	the	UUID.	
	
The	sentence...	
	
				"Given	a	string_to_encrypt,	an	encryption_key,	and	an	auth_key:"	
	
...should	be	changed	to...	
	
				"Given	a	string_to_encrypt,	the	item's	UUID,	an	encryption_key,	and	an	auth_key:"	
	
...to	make	 it	easier	 to	understand	where	the	UUID	 in	 that	section	of	 the	document	 is	coming	
from.	
	
There	is	nothing	cryptographically	binding	a	(content,	enc_item_key)	pair	to	the	name	of	the	
content	(the	UUID).	Without	this,	a	server	can	freely	swap	the	contents	of	files	without	being	
detectable	by	the	user.	
	
For	example,	if	the	user	has	a	document	they	are	about	to	share	with	the	public	and	a	document	
they	wish	to	keep	secret,	the	server	can	swap	their	contents	at	the	last	minute	to	have	the	user	
publish	the	secret	document	by	mistake.	Or,	if	the	user	is	a	malware	researcher	storing	malware	
samples	 in	Standard	File	as	well	as	backing	up	their	system	to	Standard	File,	 the	server	could	
replace	some	executables	in	their	system	backup	with	the	malware.	
	
To	fix	this,	the	ciphertext	needs	to	be	cryptographically	tied	to	the	UUID,	e.g.	by	including	the	
UUID	in	the	HMAC	calculation	of	auth_hash.	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	11	of	15	
	

#4	–	Deleted	Bit	is	Unauthenticated		
	
Severity:	Low	
Exploitability:	High	
Status:	Open	
	
Updated	July	2,	2017:	As	far	as	we	can	tell,	this	issue	hasn't	been	fixed.	It's	a	minor	issue	so	it	
seems	 like	 the	most	 appropriate	 thing	 to	 do	 would	 be	 to	 add	 a	 parenthetical	 remark	 "(not	
cryptographically	authenticated)"	 to	 the	 field's	description	 in	 the	 table	 listing	 the	 item	model	
properties.	
	
The	deleted	bit	is	unauthenticated,	so	the	server	may	delete	files	without	detection	by	the	client.	
Depending	on	what	kind	of	application	is	running	on	top	of	Standard	File,	this	might	have	bad	
security	consequences.	For	example,	if	the	application	makes	meaningful	use	of	the	"deleted"	or	
"not	deleted"	status	of	a	file	beyond	just	deleting	things	to	free	up	storage	space.	
	
This	might	not	need	to	be	fixed,	but	in	any	case,	the	problem	should	be	communicated	clearly	to	
application	developers.		
	
Write	a	threat	model	document	describing	precisely	what	security	guarantees	Standard	File	 is	
intended	to	provide.	For	example,	mention	that	the	server	can	delete	files,	that	the	server	can	
restore	files	to	earlier	versions,	that	the	server	can	change	the	content_type,	and	so	on.		
	
These	issues	must	be	communicated	clearly	to	application	developers	otherwise	they	might	rely	
on	security	features	they	assume	must	exist	but	actually	don't.	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	12	of	15	
	

#5	–	Inconsistent	HMAC	Parameter	Ordering		
	
Severity:	Low	
Exploitability:	Low	
Status:	Remediated	
	
Updated	July	2,	2017:	This	issue	has	been	fixed.	All	mentions	of	"HMAC"	in	the	document	now	
use	the	(data,	key)	parameter	order.	This	is	consistent	with	the	order	in	RFC	2104.	
	
At	one	point	in	the	design	document,	the	key	is	passed	as	the	first	parameter	to	HMAC,	
	
 encryptionKey = HMAC-SHA256(mk, "e")
 ...
 authKey = HMAC-SHA256(mk, "a").
	
However,	at	a	later	point,	the	opposite	parameter	ordering	is	used,	
	
 local_auth_hash = HMAC-SHA256(string_to_auth, auth_key).
	
Using	the	wrong	parameter	order	could	lead	to	security	problems.	Fix	this	by	using	a	consistent	
parameter	ordering	everywhere	in	the	document.	The	HMAC	RFC	(RFC	2104)	uses	the	(data,	key)	
order,	so	that	order	is	probably	best.	
	
	 	

	

©	Shackle	Labs,	LLC	 	 Page	13	of	15	
	

Recommendations	
	
The	 following	are	 informational	 recommendations	 to	 improve	 the	quality	 and	 security	of	 the	
specification.	
	
Support	Two-Factor	Authentication	from	The	Start	
If	an	adversary	ever	learns	the	user's	password,	they	can	steal	all	of	the	user's	data	as	fast	as	they	
can	download	it	from	the	server.	This	is	especially	important	for	Standard	File,	since	the	user	will	
be	accustomed	to	giving	the	same	username	and	password	to	many	applications,	and	so	will	be	
more	susceptible	to	phishing	attacks.	It	would	be	beneficial	to	build	in	support	for	time-based	
one-time-passwords	to	mitigate	this	risk.	
	
Rename	"password"	to	Something	More	Appropriate	
The	parameter	sent	from	the	user	to	the	server	during	authentication	is	called	"password"	even	
though	it	is	not	a	password.	Even	though	there	are	plenty	of	warnings,	the	application	developer	
might	 get	 confused	 and	 think	 they	 are	 supposed	 to	 send	 the	 user's	 actual	 password.	 The	
parameter	should	be	renamed	to	something	else,	and	the	server	should	perform	a	strict	length	
check	on	the	value	to	make	sure	any	application	that	is	making	this	mistake	by	accident	won't	
work.	
	
Prevent	Future	Version	Rollback	Attacks	
Clients	 are	 told	 to	 decrypt	 ciphertexts	 in	 the	 old	 (001)	 format	 using	 the	 old	 protocol	
automatically.	Since	older	versions	might	contain	vulnerabilities	that	newer	versions	don't	have,	
version	rollback	attacks	are	a	common	problem.	New	clients	that	only	create	and	use	files	in	the	
newest	version	should	not	fall	back	to	decrypting	files	in	older	versions.	Clients	supporting	newer	
versions	 should	 also	 re-encrypt	 files	 with	 the	 newest	 version	 when	 they	 next	 modify	 their	
contents	(the	server	might	even	be	able	to	enforce	this).	
	
Standardize	on	One	Hash	Function	
The	protocol	makes	use	of	SHA1,	SHA256,	and	SHA512.	There	is	no	good	reason	to	require	the	
client	 to	 have	 an	 implementation	 of	 all	 three	 of	 these	 hash	 functions,	 just	 use	 SHA512	
everywhere.	
	
Suggest	Comparing	MACs	in	Constant	Time	
The	 comparison	 between	 the	 HMACs	local_auth_hash	 and	auth_hash	must	 be	 done	 in	
constant	 time.	Most	developers	aren't	 aware	of	 this	 subtlety	and	will	 probably	 just	use	 their	
language's	built-in	"=="	string	comparison.		
	
It	might	be	worth	mentioning	that	the	comparison	should	be	done	in	constant	time.	
	

	

©	Shackle	Labs,	LLC	 	 Page	14	of	15	
	

Write	a	Threat	Model	
As	suggested	in	Issue	#4,	a	threat	model	should	be	written	so	that	applications	using	Standard	
File	know	which	security	properties	are	provided	and	which	aren't.	Otherwise	they	might	think	
Standard	File	provides	some	security	guarantee	when	it	actually	doesn't.	
	
	
		
	 	

	

©	Shackle	Labs,	LLC	 	 Page	15	of	15	
	

Errata	
	
An	earlier	version	of	this	report	recommended	an	erroneous	fix	to	the	unauthenticated	pw_cost	
and	pw_salt	parameters	in	Finding	#1.	The	original	recommendation	was	as	follows:	
	

To	authenticate	pw_cost	and	pw_nonce,	change	the	protocol	so	that	the	authentication	
steps	look	something	like	this:	
	

key = pw_function(uip, pw_salt, PBKDF2-SHA256, 768, pw_cost)
ak = key.substring(64, 32)
local_mac = HMAC-SHA256([pw_salt, pw_cost].join(":"), ak)
if timeSafeCompare(local_mac, pw_auth):
 pw = key.substring(0, 32)
 mk = key.substring(32, 32)
else:
 raise an error

	
Where	pw_auth	 is	a	new	parameter	stored	by	the	server	and	timeSafeCompare	 is	a	
timing	safe	string	comparison.	

	
We	are	grateful	to	Dmitry	Chestnykh	for	noticing	that	the	pw_auth	parameter	is	effectively	a	
password	verifier	–	it	can	be	used	to	check	guesses	of	the	user’s	password	in	an	offline	attack	–	
and	that	the	server	will	provide	it	to	anyone	who	knows	the	account’s	email	address.	This	puts	
users	with	weak	passwords	at	a	greater	risk	than	if	the	server	had	limited	control	over	the	salt,	
so	we	have	updated	our	recommendation.	

