

Standard Notes
Security Assessment
March 9, 2020

Prepared For:
Mo Bitar | Standard Notes
mo@standardnotes.org

Prepared By:
James Miller | Trail of Bits
james.miller@trailofbits.com

Claudia Richoux | Trail of Bits
claudia.richoux@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Small, insecure passwords are allowed when users change passwords
2. Secrets remain in memory for undetermined amount of time
3. Timing information on root key comparison could leak part of root key
4. Keys.offline.pw value not cleared in migrateStorageStructureForMobile

A. Vulnerability Classifications

B. Non–Security-Related Findings

C. CodeQL Analysis

D. Recommendation for Refactoring Code with TypeScript

E. Recommendations for Enforcing Secure Passwords

F. Recommendation for Guaranteeing Backward Secrecy

G. Fix Log
Detailed Fix Log

© 2020 Trail of Bits Standard Notes Assessment | 1

Executive Summary
From March 2 through March 6, 2020, Standard Notes engaged Trail of Bits to review the
security of SNJS and SNCrypto. Trail of Bits conducted this assessment over the course of
one person-week with two engineers working from commit b9d7b79 on branch 004 from
the standardnotes/snjs repository, along with commit 0059a66 on branch 004 of the
standardnotes/sncrypto repository.

At the beginning of this one-week assessment, we reviewed the relevant documentation for
SNJS and SNCrypto, and gained an overall understanding of the system. From there, we
began manually reviewing the components of both SNJS and SNCrypto, and actively
engaged with the Standard Notes team to discuss our findings. We also integrated CodeQL,
a static analyzer, into both codebases to help understand them and identify common
security issues (see Appendix C for more details).

Our manual review of the codebase revealed four findings. We report one medium-severity
issue, TOB-SNOTES-001, related to insecure passwords. The remaining three,
TOB-SNOTES-002–TOB-SNOTES-004, are informational findings related to values leaked to
timing side-channels, and values not being cleared after they are no longer needed.

Trail of Bits performed an assessment of protocol version 004. Standard Notes provided
thorough documentation for this protocol. We recommend adjusting this protocol to
guarantee backward secrecy, which can be found in Appendix F.

Besides that, we found this protocol to be robust, and we report no findings related to the
design of this protocol. Further, we found that Standard Notes uses strong and modern
cryptographic primitives in their design; the strength of these primitives limited the
feasibility of exploitation for some of our findings. In addition, we found that Standard
Notes employs well-accepted coding practices. We have included recommendations for
improving the code quality and architecture in Appendix B and Appendix D (respectfully),
but these represent improvements to an already strong codebase. Lastly, due to time
limitations, our assessment consisted mainly of manual review. Given more time, we would
like to integrate fuzzing into the codebases and perform a more in-depth manual review of
SNJS.

We encourage Standard Notes to integrate fuzzing into their codebases. Fuzzing is a great
way to find bugs from unexpected behavior not encapsulated in the unit tests. We also
encourage Standard Notes to vigilantly protect secrets stored in memory, and, when
possible, ensure these values are cleared once they are no longer needed. Further, we
encourage Standard Notes to consider our recommendations detailed in our appendices:
Appendix D details a recommendation for refactoring the codebase using TypeScript to

© 2020 Trail of Bits Standard Notes Assessment | 2

help achieve more secure, maintainable code; Appendix E details recommendations for
enforcing secure passwords; and Appendix F details a recommendation for guaranteeing
backward secrecy.

Update: On September 8, 2020, Trail of Bits reviewed fixes implemented for the issues presented
in this report. Standard Notes also implemented the recommendations described in Appendix D
and Appendix F. For more details on the review of these changes, see Appendix G.

© 2020 Trail of Bits Standard Notes Assessment | 3

Project Dashboard
Application Summary

Name SNJS, SNCrypto

Version 004

Type JavaScript

Platforms Desktop, web, mobile

Engagement Summary

Dates March 2–6, 2020

Method Whitebox

Consultants Engaged 2

Level of Effort 1 person-weeks

Vulnerability Summary

Total High-Severity Issues 0

Total Medium-Severity Issues 1 ◼

Total Low-Severity Issues 0

Total Informational-Severity Issues 3 ◼◼◼

Total 4

Category Breakdown

Configuration 1 ◼

Data Exposure 2 ◼◼

Data Validation 1 ◼

Total 4

© 2020 Trail of Bits Standard Notes Assessment | 4

Engagement Goals
The engagement was scoped to provide a security assessment of the 004 branches of both
the SNJS and SNCrypto code repositories. The 004 branch represents the fourth version of
the Standard Notes protocol. We assessed the cryptography and overall security of this
protocol version.

Specifically, we sought to answer the following questions:

● Does the provided specification of version 004 achieve its design goals?
● Does the provided specification have any flaws?
● Does the protocol use safe cryptographic primitives, and use them correctly?
● Do the SNJS and SNCrypto implementations comply with the claims of the provided

specification?
● Are secret values cleared from memory after they are no longer needed?
● Is any secret information leaked to timing side-channels?
● Client root keys and server passwords are generated with argon2id and then split.

Should each key also be input into a HKDF?
● Item’s uuid and protocol version are included as part of the additional

authentication parameters for authenticated encryption. Should items_key_id also
be included in the additional authentication parameters?

Coverage
The assessment of SNJS and SNCrypto was primarily performed through manual review.
First, we manually reviewed the protocol described in the provided specification. Then we
manually reviewed both codebases for their compliance with the specification, and
conducted general security and cryptographic reviews.

In addition to the manual review, we also integrated CodeQL, a static analysis tool, into
both codebases (see Appendix C for more details). This allowed us to better understand
how portions of the codebases interacted with each other. CodeQL also helps identify
common security and code quality issues, and fuzzing targets. Unfortunately, due to the
brevity of the assessment, we were unable to integrate fuzzing into these codebases. If
Standard Notes is interested in integrating fuzzing into their codebases, we encourage
them to use Burp Suite.

© 2020 Trail of Bits Standard Notes Assessment | 5

https://portswigger.net/burp

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Adjust the code responsible for handling password changes to enforce a minimum
length. This will help prevent users from using very insecure passwords.
(TOB-SNOTES-001)

❑ Whenever possible, use Javascript array buffers to store long-lived cryptographic
keys instead of strings. These are mutable and do not live on the heap, which allows you
to control the storage and expiration of sensitive data. Be sure to add routines zeroing the
buffers as soon as they are no longer necessary. (TOB-SNOTES-002)

❑ Further, ensure all references to the password or passcode strings are out of scope
after the application has finished using them. This will help ensure secret values are not
leaked. (TOB-SNOTES-002)

❑ Refactor the compare function to include a secure, constant-time comparison
function. This will prevent timing information from leaking information about the root key.
(TOB-SNOTES-003)

❑ Adjust the mobile migration code to clear the keychain of the keys.offline.pw
values once migration has occurred. This value is no longer needed and should be
cleared from memory to comply with the protocol specification. (TOB-SNOTES-004)

Long Term
❑ Consider enforcing stronger password requirements in addition to a minimum
length. Users tend to choose weak passwords, and adding stronger password
requirements is a good security practice. See Appendix E for further details.
(TOB-SNOTES-001)

❑ Consider the tradeoffs of storing data in a mutable data type that can be zeroed
out, or storing it in a data type that doesn’t live on the heap. If the data is not zeroed
out when the application is done using it, this gives an attacker a window to dump the
memory and try to recover it. If the data is on the heap, JS engines with a GGC could move
it to multiple locations and take much longer to overwrite it once all references are gone.
(TOB-SNOTES-002)

© 2020 Trail of Bits Standard Notes Assessment | 6

❑ Be vigilant of all comparisons between secret values, and ensure that the
operations do not leak any information. Timing information can unintentionally leak
secrets, with devastating results. (TOB-SNOTES-003)

❑ Document where imperative secret values are stored and clear them from those
locations when they are no longer needed. Leaving unneeded values in memory gives
no benefit to the user and can help an attacker learn more information. (TOB-SNOTES-004)

© 2020 Trail of Bits Standard Notes Assessment | 7

Findings Summary
Title Type Severity

1 Small, insecure passwords are allowed
when users change passwords

Configuration Medium

2 Secrets remain in memory for
undetermined amount of time

Data Exposure Informational

3 Timing information on root key
comparison could leak part of root key

Data Exposure Informational

4 Keys.offline.pw value not cleared in
migrateStorageStructureForMobile

Data Validation Informational

© 2020 Trail of Bits Standard Notes Assessment | 8

1. Small, insecure passwords are allowed when users change passwords
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SNOTES-001
Target: snjs/lib/services/api/session_manager.js

Description
Standard Notes provides an API for account management, which includes registering an
account (email and password), changing passwords, and more. When a user attempts to
register for an account, Standard Notes verifies that the password is at least eight
characters (see Figure 1.1).

async register({ email, password }) {
 if (password.length < MINIMUM_PASSWORD_LENGTH) {
 return this.apiService.error(
 messages.InsufficientPasswordMessage(MINIMUM_PASSWORD_LENGTH)
);
 }
 ...
 return this.apiService.register({
 email,
 serverPassword,
 keyParams
 }).then(async (response) => {
 await this.handleAuthResponse(response);
 return this.returnAfterTimeout({
 response: response,
 keyParams: keyParams,
 rootKey: rootKey
 });
 });
 }

Figure 1.1: Function for registering email and password.

However, the logic for a password change request does not include this same check (see
Figure 1.2). Therefore, the API does not protect against users submitting very short and
very insecure passwords when requesting a password change.

async changePassword({ email, currentPassword, currentKeyParams, newPassword }) {
 const currentServerPassword = await this.protocolService.computeRootKey({
 password: currentPassword,
 keyParams: currentKeyParams,

© 2020 Trail of Bits Standard Notes Assessment | 9

https://github.com/standardnotes/snjs/blob/b9d7b7939a8f123798e553ab705916e5251b0981/lib/services/api/session_manager.js#L83-L109

 }).then((key) => {
 return key.serverPassword;
 });
 const { newServerPassword, newRootKey, newKeyParams } = await

this.protocolService.createRootKey({
 identifier: email,
 password: newPassword
 }).then((result) => {
 return {
 newRootKey: result.key,
 newServerPassword: result.key.serverPassword,
 newKeyParams: result.keyParams
 };
 });
 return this.apiService.changePassword({
 email,
 currentServerPassword,
 newServerPassword,
 newKeyParams
 }).then(async (response) => {
 await this.handleAuthResponse(response);
 return this.returnAfterTimeout({
 response: response,
 keyParams: newKeyParams,
 rootKey: newRootKey
 });
 });
 }

Figure 1.2: Function for changing password.

Exploit Scenario
An attacker, Eve, controls a server, and she is aware that the Standard Notes API allows for
weak passwords upon change requests. Therefore, Eve keeps track of all accounts that
change their passwords and attempts to attack their accounts.

Alice registers an account with Standard Notes, requests a password change, and submits a
very small, insecure password. Eve notices Alice's password change, successfully attacks
her account, and steals all of her files.

Recommendation
Short term, adjust the code responsible for handling password changes to enforce a
minimum length.

© 2020 Trail of Bits Standard Notes Assessment | 10

https://github.com/standardnotes/snjs/blob/b9d7b7939a8f123798e553ab705916e5251b0981/lib/services/api/session_manager.js#L187-L217

Long term, consider enforcing stronger password requirements in addition to a minimum
length. See Appendix E for further details.

© 2020 Trail of Bits Standard Notes Assessment | 11

2. Secrets remain in memory for undetermined amount of time
Severity: Informational Difficulty: High
Type: Data Exposure Finding ID: TOB-SNOTES-002
Target: various

Description
Part of the Standard Notes threat model asserts that private data should be inaccessible
when the application is locked. Item keys and encrypted item keys remain on the heap with
references to them until a garbage collector (GC) sweep.

Because of optimizations like generational garbage collectors (GGCs) and GCs that wait for
low CPU usage to do a sweep, this could be quite some time, especially if the GGC moves
data from the nursery to the tenured heap because it has been on the heap for some time.
The Javascript GC also makes no promises as to when various parts of the heap will be
overwritten with other data, so sensitive data will likely also be accessible for some time
after a sweep, with a bit of heap analysis.

Unfortunately, this issue is unavoidable to some extent. In this system, secrets must be
stored in strings in order to interact with particular APIs. Once data is stored in strings,
there is no guarantee when the values will be cleared by the GC. Therefore, this issue will
only be completely avoidable when strings are not required.

Exploit Scenario
An attacker who can run code on the client device could potentially stall a GC sweep while
dumping the application’s process memory. If the attacker stalls the sweep long enough,
they can access sensitive data and some useful references and associated data to make
recovering compromised keys even easier. Even without a sweep, sensitive data—including
passwords, the root key, decrypted notes, or item keys—could remain in memory leaked to
an attacker.

Recommendation
Short term, whenever possible, use Javascript array buffers to store long-lived
cryptographic keys instead of strings. These are mutable and do not live on the heap, which
allows you to control the storage and expiration of where the sensitive data goes and its
destruction when it is destroyed. Be sure to add routines zeroing the buffers as soon as
they are no longer necessary. Further, ensure all references to the password or passcode
strings are out of scope after the application has finished using them.

Long term, consider the tradeoffs of storing data in a mutable data type that can be zeroed
out, or storing it in a data type that doesn’t live on the heap. If the data is not zeroed out
when the application is done using it, this gives an attacker a window to dump the memory
and try to recover it. If the data is on the heap, JS engines with a GGC could move it to
multiple locations and take much longer to overwrite it once all references are gone.

© 2020 Trail of Bits Standard Notes Assessment | 12

3. Timing information on root key comparison could leak part of root key
Severity: Informational Difficulty: High
Type: Data Exposure Finding ID: TOB-SNOTES-003
Target: snjs/lib/services/key_manager.js, snjs/lib/protocol/root_key.js

Description
Standard Notes derives a user's root key from their password. The Standard Notes
application interface provides a method, validateAccountPassword, which will validate a
given password. To perform this validation, the password is input into the key derivation
function (argon2id in version 004), and the result is compared against the root key (see
Figure 3.1).

/**
 * @param {string} password The password string to generate a root key from.
 * @returns {key|null} The computed rootKey if valid password, otherwise null.
 */
 async validateAccountPassword(password) {
 const keyParams = await this.getRootKeyParams();
 const key = await this.protocolService.computeRootKey({ password, keyParams });
 const success = key.compare(this.rootKey);
 return success ? key : null;
 }

Figure 3.1: Function for validating account password.

To compare the generated key with the root key, the compare function is called. This
function performs a comparison using the JavaScript === operator (see Figure 3.2). While
any attacker with access to this function would also have direct access to the root key, this
operator in general does not have any timing guarantees. Timing information on this
comparison could be leveraged to learn parts of the root key.

/**
 * Compares two keys for equality
 * @returns {boolean} true if equal, otherwise false.
 */
 compare(otherKey) {
 if (this.version !== otherKey.version) {
 return false;
 }
 const hasServerPassword = this.serverPassword && otherKey.serverPassword;
 return (

© 2020 Trail of Bits Standard Notes Assessment | 13

https://github.com/standardnotes/snjs/blob/b9d7b7939a8f123798e553ab705916e5251b0981/lib/services/key_manager.js#L464-L473

 this.masterKey === otherKey.masterKey &&
 (!hasServerPassword || this.serverPassword === otherKey.serverPassword)
);
 }

Figure 3.2: Function for comparing root keys.

Exploit Scenario
Alice sets up an account with Standard Notes. Eve wants to break into Alice's account and
notices that Standard Notes is using a comparison that leaks information about the root
key. Eve then attempts various passwords, some of which leak information about the root
key.

Recommendation
Short term, refactor the compare function to include a secure, constant-time comparison
function.

Long term, be vigilant of all comparisons between secret values and ensure that the
operations do not leak any information.

References

● Preventing Timing Attacks on String Comparison

© 2020 Trail of Bits Standard Notes Assessment | 14

https://github.com/standardnotes/snjs/blob/b9d7b7939a8f123798e553ab705916e5251b0981/lib/protocol/root_key.js#L74-L87
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy

4. Keys.offline.pw value not cleared in
migrateStorageStructureForMobile
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SNOTES-004
Target: snjs/lib/migration/migrations/2020-01-15.js

Description
Standard Notes includes a few files related to a system migration. This migration primarily
shifts how certain values are stored. Among other functions,
migrateStorageStructureForMobile performs storage migration for legacy versions. This
function is responsible for migrating the wrapped account key into the rawStructure.

In the old version, mobile systems stored the keys.offline.pw value in the device’s
keychain. This value, also known as serverPassword, corresponds to the second half of the
output of argon2id computed from the user's password. To verify a password, the old
systems would input a password into the KDF (pbkdf2 in the old system) and compare the
second half against this stored value. The new version will instead verify passwords by
attempting decryption and accepting the password if it does not fail.

To perform this migration, the password must be verified one last time via the old method.
Once the password is verified, the wrapped account key can be placed in the
rawStructure.

The goal is to migrate the wrapped key into the new storage and switch password
verification to the new version. This means that passwords will not be verified by
comparison against keys.offline.pw, and this value should be cleared from the keychain.
However, in the code performing this migration, this value is not cleared.

Exploit Scenario
Alice uses Standard Notes on a legacy mobile platform and performs this migration.
Normally, an attacker learning keys.offline.pw would not be a problem. However, Alice
believes that after the migration is performed, keys.offline.pw is no longer statically
stored and decides to use this value elsewhere to secure some other secret information.
An attacker, Eve, is able to read this value from the keychain and recover Alice's secrets.

Recommendation
Short term, adjust this code to clear the keychain of these values once migration has
occurred.

Long term, document where imperative secret values are stored and clear them from those
locations when they are no longer needed.

© 2020 Trail of Bits Standard Notes Assessment | 15

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for

© 2020 Trail of Bits Standard Notes Assessment | 16

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Standard Notes Assessment | 17

B. Non–Security-Related Findings
This appendix contains findings that do not have immediate or obvious security
implications.

● The Standard Notes account management API provides a function for registering an
email and password. The function attempts to prevent multiple registrations from
occurring at the same time by defining a mutex. However, as written, the incorrect
variable names are used. The value this.registering is set when registration
occurs, but the function checks the value this.registerInProgress. Therefore, this
will not prevent multiple registrations from occurring at the same time.

● SNCrypto implements various cryptographic primitives by wrapping around libraries
such as libsodium. There are a few functions in SNCrypto that do not catch the
generic exceptions thrown by libsodium, e.g. xchacha20Encrypt and argon2.
Catching these exceptions and throwing more descriptive errors could improve the
overall usability of the codebase. However, be vigilant of error messages for
decryption functions as these can introduce padding oracles.

© 2020 Trail of Bits Standard Notes Assessment | 18

C. CodeQL Analysis
CodeQL is a static analysis tool created by Semmle (now part of GitHub) that runs on code
to build call and dataflow graphs, and to make it possible to query a codebase like a
database. It allows for queries for several languages, including Javascript, that target
common code hygiene and security issues. During the course of the audit, we used CodeQL
to help us understand how various pieces of code interact with each other. We also ran the
provided Javascript query packs against the sncrypto and snjs libraries to identify
common issues.

CodeQL produced over 20 pages of output, most of which had to do with malformatted,
incomplete, or inaccurate docstrings. The output for sncrypto was entirely these, so we do
not provide them. The output from snjs (with the docstring warnings removed for brevity)
is in Figure C.1. If Standard Notes is interested in the entire output of CodeQL, we
encourage them to run the tool again.

"Superfluous trailing arguments","A function is invoked with extra trailing

arguments that are ignored.","warning","Superfluous argument passed to

[[""function

addSeparator""|""relative:///services/component_manager.js:1177:26:1190:5""

]].","/services/component_manager.js","1221","62","1221","65"

"Useless conditional","If a conditional expression always evaluates to true

or always evaluates to false, this suggests incomplete code or a logic

error.","warning","This use of variable 'interval' always evaluates to

true.","/device_interface.js","29","21","29","28"

"Useless conditional","If a conditional expression always evaluates to true

or always evaluates to false, this suggests incomplete code or a logic

error.","warning","This use of variable 'args' always evaluates to

true.","/services/pure_service.js","45","11","45","14"

"Missing space in string concatenation","Joining constant strings into a

longer string where two words are concatenated without a separating space

usually indicates a text error.","warning","This string appears to be

missing a space after

'Notes,'.","/services/component_manager.js","445","15","445","74"

Figure C.1: CodeQL output from running the javascript-lgtm-full tests against snjs.

© 2020 Trail of Bits Standard Notes Assessment | 19

D. Recommendation for Refactoring Code with TypeScript
In many places, the client maintains a sync state, item state, and session state that are
controlled by setting fields on objects. Also, the client may accept input from the server that
is not correctly formatted per the specification (i.e., contains extra JSON fields in the
response). This can lead to bugs where the code is not fully in line with the specification.

To guarantee there are no logic bugs where the client can enter into an invalid state or
inadvertently expose data, we recommend a potential refactor of portions of the code with
certain TypeScript libraries. These will help fully constrain the client’s possible states and
transitions between those states.

Maintaining state by conditionally setting fields on objects can be dangerous, because it is
common to forget to check or set a relevant field and thus introduce a vulnerability. Relying
on the type system for this functionality puts the reponsibility on the compiler to make
sure all of the code is correct, and has an added benefit of strictly constraining client
behavior.

We recommend considering XState or TypeState to model and implement complex logic,
like the authentication process, sync, password updates, login and logout, and transitioning
from offline to online. The state diagrams can correspond one-to-one with the specification
and ensure that the code is in agreement with it.

We also recommend considering a strongly typed API using Express with TypeScript to
ensure that server response fields conform precisely to a specification and handle protocol
versioning issues cleanly. This code could also be reused on the server for easier
implementation and versioning.

Generally, using more language features and leaning on automatic type-checkers for extra
safety make codes more secure, clean, and maintainable.

© 2020 Trail of Bits Standard Notes Assessment | 20

E. Recommendations for Enforcing Secure Passwords
While reviewing the Standard Notes codebase, Trail of Bits discovered TOB-SNOTES-001, a
finding related to allowing insecure passwords when a password is changed. In reviewing
this finding with the Standard Notes team, we discussed enforcing strong passwords in the
system generally. Currently, when a user registers an email and a password, a minimum of
eight characters is required for the password length. However, there are no other
restrictions on the password. The Standard Notes team expressed a desire to enforce
stronger password requirements in the future. We discussed a few recommendations in
this area, and we will detail them further in this appendix.

NIST SP 800-63B provides comprehensive guidance for enforcing secure passwords. For
example, restrict the use of sequential or repeating characters (e.g., “aaaaaaaa” or
“12345678”), restrict words that are related to the application, and restrict the use of
common or previously breached passwords. The publication also suggests the use of a
password meter to give users feedback on the strength of their password. Standard Notes
could also enforce a minimum password strength according to this meter. NIST SP 800-63B
details several other recommendations for increased security and usability, and we
encourage Standard Notes to adhere to their guidance when making future design
decisions.

We also discussed the use of randomly generated words from a predefined word list with
Standard Notes. BIP 39 specifies a protocol for converting a passphrase into a secret. In
addition, there are several existing tools, like Diceware, that generate random passphrases
for a user. With a large enough word list, using a passphrase with only four or five
easily-remembered words can already surpass the entropy of the average password.

© 2020 Trail of Bits Standard Notes Assessment | 21

https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ndss-symposium.org/wp-content/uploads/2017/09/06_3_1.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
http://world.std.com/~reinhold/diceware.html

F. Recommendation for Guaranteeing Backward Secrecy
The Standard Notes protocol defines a hierarchical key structure. The root key is derived
from the account credentials. The itemsKeys are generated randomly and are encrypted
with the root key. For each item to be encrypted, a random item_key is generated and is
encrypted with an itemsKey. Then the itemsKeys and item_keys are stored encrypted on
the server (along with encrypted files).

If an account’s credentials are breached (and thus the root key is breached), the itemsKeys
can be immediately recovered, and, from there, the item_keys and individual items can
also be recovered. The Standard Notes protocol provides a mechanism for changing
passwords. However, when a password is changed, the same itemsKeys are still used by
default (unless there was a protocol version upgrade or the user sets an explicit flag).

Backward secrecy is a security property that guarantees that if past credentials are
compromised, files created after those credentials were changed will not be at risk.
Currently, the protocol does not achieve backward secrecy. If a user’s old credentials are
breached, a malicious server could still have access to itemsKeys encrypted with the old
root key. Since the same itemsKeys are used by default, the server can use these to
decrypt files created after the password change.

We recommend adjusting the protocol to always change itemsKeys whenever a password
is changed. Since this option is already available (but not by default), it is a minor change.
Furthermore, this adjustment will guarantee backward secrecy for the protocol.

© 2020 Trail of Bits Standard Notes Assessment | 22

G. Fix Log
Standard Note addressed the issues raised in this assessment. Each of the presented fixes
were verified by Trail of Bits, as seen below. Standard Notes also addressed the
recommendations presented in Appendix D and Appendix F. The reviewed code is available
in git revision 7476ec05.

ID Title Severity Status

01 Small, insecure passwords are allowed when users
change passwords Medium Fixed

02 Secrets remain in memory for undetermined
amount of time Informational Risk Accepted

03 Timing information on root key comparison could
leak part of root key Informational Fixed

04 Keys.offline.pw value not cleared in
migrateStorageStructureForMobile

Informational Fixed

© 2020 Trail of Bits Standard Notes Assessment | 23

https://github.com/standardnotes/snjs/tree/7476ec058f68291a58357148efcb2d9323b3b3e7

Detailed Fix Log
This section includes brief descriptions of fixes implemented in Standard Notes and
reviewed by Trail of Bits after the end of this assessment.

Finding 1: Small, insecure passwords are allowed when users change passwords
This issue has been resolved. When a password change is requested, the length of the
password is verified.

Finding 2: Secrets remain in memory for undetermined amount of time
Risk accepted. Standard Notes found this recommendation to be infeasible for their
modern user interface application.

Finding 3: Timing information on root key comparison could leak part of root key
This issue has been resolved. The key comparison now uses a constant-time comparison,
which prevents timing information from leaking part of the key.

Finding 4: Keys.offline.pw value not cleared in migrateStorageStructureForMobile
This issue has been resolved. The keychain values are now cleared when migration is
complete in migrateStorageStructureForMobile.

Appendix D: Recommendation for Refactoring Code with TypeScript
This recommendation has been implemented; the codebase has been refactored with
TypeScript.

Appendix F: Recommendation for Guaranteeing Backward Secrecy
This recommendation has been implemented, and the itemsKeys are changed by default
whenever the password is changed.

© 2020 Trail of Bits Standard Notes Assessment | 24

https://github.com/standardnotes/snjs/blob/004/lib/application.ts#L1107
https://github.com/standardnotes/snjs/commit/9ff04c1c55571f73726bbdcf299c2a5f56592413#diff-793dce09be3f67754c8d5806bfa1b9b2
https://github.com/standardnotes/snjs/blob/004/lib/migrations/2020-01-15.ts#L380
https://github.com/standardnotes/snjs/blob/37550c68cb7454053c600391040aec7a666d5e8c/lib/services/protocol_service.ts#L1431

